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The mechanism of low-temperature plastic deformation is controlled by thermally activated dislocation 
movements. An evolutionary constitutive law based on the principles of deformation kinetics is described 
in this article. The constitutive law is expressed with a sinh function designed for computational effi- 
ciency. It is derived from rigorously defined kinetics principles. The approximation involved in the sinh 
function is defined so that in applications an exact evaluation can be made of the validity limits. The sys- 
tem of the constitutive law and the external constraints lead to the operational equations. Applications 
are developed for constant strain-rate loading, constant stress-rate loading, stress relaxation, creep, and 
ratchetting processes. The analysis provides a unified treatment for low-temperature plastic deforma- 
tion. 
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1. Introduction 

THE mechanism of  low-temperature plastic deformation (in 
the range of T < 0.3 T m, where Tra is the melting point) is con- 
trolled predominantly by the conservative motion of disloca- 
tions.ll-10l Krausz and Eyring 111] derived a rigorously 
expressed rate theory as the combination of forward and re- 
verse activation steps over rate-controlling energy barriers and 
the associated kinetics description of thermally activated plas- 
tic deformation processes. The physically based deformation 
kinetics theory, as one of the two coupled equations of the con- 
stitutive laws of time- and temperature-dependent plastic de- 
formation, is well established.[ 101 The constitutive law defines 
the behavior of the material: It is the description of the internal 
constraints. On this, the external constraint, the service condi- 
tion of  structures and machine elements or test method has to be 
imposed. This combination results in the operational equation 
that provides the mathematical description of the behavior in 
testing or for the design of components. 

In testing and often in service of  components, the typical ex- 
ternal constraints are 

�9 Constant strain rate 

�9 Constant stress rate 

�9 Stress relaxation 

�9 Creep 

�9 Ratchetting 

The constitutive laws derived from deformation kinetics 
provide the physically rigorous expression of the behavior un- 
der these conditions, as well as under the effect of  other exter- 
nal constraints, including the description of the effects of 
temperature and its variation during tests or in service. 
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2. The Rate Equation 

In thermally activated dislocation motion, the rate of the 
process is defined by the rate of atomic bond breaking steps and 
by the changes in the interatomic distances and angles. The rate 
of each step is defined by the elementary rate constant: 

[11 

where v is the frequency factor; for the present purpose, it is 
adequate to consider it as a constant v = 6 x 1012 s-l; k is 
the Boltzmann constant; T is the absolute temperature; and 
AG* (W) is the apparent activation energy. 

The apparent activation energy is defined by: 

AG* (W) = AG* + W (x) = AG* + I/% [21 

where AGe is the true activation energy, the energy needed to 
break atomic bonds and to rearrange the atoms by a specific 
mechanism of the process; W = Vx is the mechanical work con- 
tributed by the effective shear stress, x, acting on the disloca- 
tion; and V is the activation volume. The sign of W(%) and Vx, is 
defined by the direction of the dislocation movement: It is posi- 
tive for forward activation and negative for reverse activation. 
Figure 1 illustrates the change in the height of the energy bar- 
rier that controls plastic deformation. The effects of the work 
on the apparent activation energy of the forward and reverse ac- 
tivation is also demonstrated. 

Dislocation velocity represents the net rate of thermal acti- 
vation over the energy barrier: 

v=t/kl-trkr [31 

where I is the activation distance; k is the activation rate, as ex- 
pressed by Eq 1, and the subscriptsfand r signify forward and 
reverse activation, respectively. 

Substituting Eq 1 to 3 in the Orowan equation 

"yp = b p v  [4] 
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Fig. 1 Schematic of a single energy barrier system. 

where "~p is the plastic strain rate, p is the dislocation density, 
and b is the Burger's vector, the strain rate is 

 p=alexPlkrJ-Arexp -- ) [51 

where 

Af=vblfpfexp(~_ AG~'~ (AG~r) --~-T Jandar=vblrPreXP t---~T- ) 

Equation 5 has been widely used for the description of plas- 
tic deformation. [11-17] It expresses the most general condition 
that (1) the dislocation density, p, (2) the activation energy, 
AG~, and (3) the activation volume, V, may not be the same in 
the forward and in the reverse direction. The rate constants, Af 
and A r, usually vary with stress because the dislocation density 
changes during deformation.ll8,19l Dislocation multiplication 
can affect significantly the yield drop and the time-delay of 
creep in low activation energy materials such as Ge, LiF, ice, 
and even in mild steels. [11,2~ In high-strength alloys, the acti- 
vation energy is large, and the stress dependence of the expo- 
nential function is so large that the effect of the change in the 
pre-exponential term can be neglected and Af and A r can be 
considered to be independent of the stress. Under various con- 
ditions, Eq 5 can be further simplified. In particular, it is well 
recognized that in the high-temperature region the energy bar- 
rier is symmetrical, and the rate equation reduces to a sinh-type 
relation.[14-17l 

The empirical relation:121,221 

"~p = A' sinh n ~lx [6] 

was proposed a very long time ago and is still used extensively 
for the kinetics equation of the constitutive law. In Eq 6, A', ~, 
and n are experimental constants. Equation 6 appears to be a 
reasonably good description of the behavior exhibited in many 
tests; however, being an empirical expression, its validity can- 
not be assumed outside the actually tested range. This limits its 
application severely. Because the deformation kinetics rate 
equation (Eq 5) is physically based and rigorously derived, it 

(w) 

can be used for extrapolation with confidence and for the physi- 
cal description of the parameters of the sinh n relation (Eq 6). 
Equating 5 and 6 yields: 

~p=A, sinhn~x=A, Iex p (~lx)- exP2. (-~x)] n 

(Vf~ (Vr'C) 
=AfexPlkTJ-arexP~kT ) [7] 

( V r ' ~  
At high stresses, the reverse terma r exp I --~-~-/and exp (-13x) 
are negligible, i.e.: 

a '  ( -~ - /  
:s exp = a l e x p   kr) 

From this, it follows that: 

A' = 2nAfand nl~ = k~ [8] 

At low stresses (when ~x << 1), the sinh term in Eq 7 reduces to 
a power-law function: 

P n n - -  . ~  _ A~X -Afexp A r e x p ~ - - ~ ' -  ~ [9] 

From Eq 9, the exponent is 

A, fVf's (Vf~ arVr T, (_ Vr'g ) 
dln;tp kT exp ( k T  ~ + - - - ~  exp kT) 

n = - -  - [10] 
din  "c A'ex I  J-arex  

and from Eq 8 and 10, [3 is defined as: 

A r ( (Vf+Vr)'~ 7 

~i = nkT- x ArV r ( (V[+ Vr)X')l 
1 + A'~f  exp [ -  kT 3] 

[11] 

Equations 8, 10, and 11 define A', 13, and n in terms of rigor- 
ously derived physical quantities: The ~p = A' sinh n ~x relation 
is now equivalent to the physically based rate equation (Eq 5) 
and describes the plastic strain rate well. 

In applications, the integration of Eq 5 or 6 may be incon- 
venient when the internal stress, and hence the effective stress, 
changes with deformation in low-temperature deformation. 
For the economical evaluation of test results and for the design 
of components, a constitutive law that incorporates the rigor- 
ousness of the deformation kinetics rate equation and the sim- 
plicity of the empirical form of the hyperbolic ~.~p.e model 
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expressed with physically defined parameters is of advantage. 
To obtain this form, Eq 5, 6, 9, 10, and 11 are combined to yield: 

�9 7P:AIexp~kTJ-arexp t kT) [ 1 2 ]  

Equation 12 is in formal agreement with the rigorously de- 
rived equation (Eq 5) at the condition that the work is the same 
in forward and reverse activations. In Eq 12, A'r is an activation 
parameter that can be determined by expressing the threshold 
condition ~/p = 0 from Eq 5 and 12: 

kT I n ' f =  k T  , A'r "Cth = Vf + Vr "~f  In --~-f [13] 

From this, it follows that: 

A' =A (Ar  2V/.. 
r fIAfJV/+V 

In the high strain rate ra ,  ge, the reverse rate terms are negli- 
gible, and Eq 5 and 12 are identical. In the low range, the differ- 
ence between the two is 

A__~_ A'rexp -k-T) - Ar exp - k T  ) 

AfexPlkT~-Arexp [- kT) 

Afexp l -  Vf('c-2"~th)l-ArexPlkT ~--~-) Vr'cl 

(Vf~ Vr'C I 
AfexPtkTt-Arexp( - kT) 

fVf~th~ ( VrT'th~ ((Wf-Wr)(T'-'~th! I 
Afexp t kT J - A r e x p ~  - k-'--T-) eXp kT ) 

AfexPlkT~-arexp ~ kT) 

exp/ 1 
where A:tp represents the difference between Eq 5 and 12. 

Typically for IV r - Vfl < 10 b 3 (the lower limit for Peierls- 
Nabarro mechanismlW), x - "Cth < 30 MPa (about one third of 
Orowan stress, which characterizes the threshold condition[10b 
and T = 300 K: 

I _  (V r - Vf)(T, - Tth) l~.  (V r -- Vf)(T, -- "~lh) 
exp kT ] 1 - kT 
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Fig. 2 Typical strain rate versus stress relation. The solid line 
represents Eq 5, with Af = 2 x 10 -3, Vf/kT = 0.073, A r = 
2.5 x 10 -3, and Vr/kT= 0.01. The dotted line represents Eq 6, 
with A = 9.17 x 10 -3, ~ = 0.034, and n -- 2.06. The dashed line 
represents Eq 12, with Af= 2 • 10 -3, A r = 3 x 10 -3, and V/kT = 
0.073. The symbols represent the observed behavior. 1211 

80.0 

The error reduces to (the condition ~/p = 0 at x = Xth has been 
used): 

IA~I _ 

IWr-Wfl(T'-'Cth) ( Wr'Cth~ ( W/(T--T'th) I 
kT At exp ~- - - ~ )  exp ~- kT ] 

Vrg 
AfexPlkTJ-arexp (- kT) 

exp (Vf(kT'Cth))-expt Vr('~-'(th)l-~ ") 
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which approaches to IV r -  V//(V r + Vf) < 1 as x ---) xth and dimin- 
ishes rapidly with increasing stress. Because in the threshold 
region strain rate measurements have a scatter factor of about 4, 
Eq 12 is a good approximation of the general equation (Eq 5) 
within the specified error range. Figure 2 illustrates the strain 
rate defined by Eq 5 and 12 together with the empirical equa- 
tion (Eq 6) measured in an A1-Mg alloy. [2U All curves fall 
within the +2 band that envelopes the experimental data. 

Letting Vf= Vr= V, both Eq 5 and Eq 12 become: 

~[p: A~fArlexpI.V(kTT'th)l-expl. V(k~T-----~th)]] 
which can be expressed as a hyperbolic sine function: 

v (x - %h) 
+p = 2A sinh kT [14] 

where 

(_AG? + ACr* ] 
A = ~ f A  r = b v • l f l r p f p  r exp 2kT 

During deformation, .polycrystalline materials often un- 
dergo work hardening. For small strains, [2~ the effective stress 
can be expressed as: 

Xeff = "C - X i = "c - H 7 -  Xio [151 

w h e r e  "1~ iis the internal stress; xiois the initial internal stress; and 
H is the work-hardening coefficient. 

Substituting the effective stress from Eq 15 into Eq 14, the 
rate equation is 

V (x - HTs - x0) [ 16] 
+e = 2A sinh kT 

where 

k T ,  Ar 
X 0 = Xio + Xth = XiO + ~ m [17] 

. A p p l i c a t i o n - - O p e r a t i o n a l  Equat ions 

Define a normalized energy function �9 as: 

V r = ~ (~ - / %  - %) [18] 

By definition, �9 is the effective activation work normalized 
with thermal energy content kT. Because the activation pa- 
rameters (Ap A r, V, and Xio ) and the work-hardening coefficient, 
H, are microstructural quantities, the function O depends on the 

T m a x  

timo t 

Fig. 3 Triangular wave loading profile; t R is the stress rising 
time. 

current stress, the accumulated plastic strain, and the tempera- 
ture. The evolution of function �9 controls the deformation re- 
sponse. For an isothermal process, the small-strain 
deformation is governed by: 

7 = - - + 7 p  [19] 
~t 

~/p = 2A sinh �9 [20] 

�9 V �9 ~, = ~ (x - / - /+p [21] 

7 = 7e + 7p, where 7e = x/kt (~t is the shear modulus) is the elastic 
strain, and 7p is the plastic strain. The shear strain, % can be con- 
verted to the normal strain, e, with the relation [1~ e = ),f13, and 
the shear stress x can be converted to the normal stress t~ 
with [l~ ~ = "~x. 

By imposing the loading constraint, the evolutionary equa- 
tion (Eq 20) and Eq 21 can be solved to yield the operational 
equation that describes stress-strain, stress-time, and strain- 
time response. 

3 . 1 .  Constant Stra in-Rate  L o a d i n g  

At constant strain rate, Eq 19 yields: 

Substituting this and the rate equation (Eq 20) into Eq 21: 

Vl't~t [" - ( 1  + H ] 2 A  sinh ~ ]  

77 [22] 

Equation 22 can be integrated to: 

n o  l a 

Xu + b = Z + b exp [23] 

where 

172--Volume 3(1) February 1994 Journal of Materials Engineering and Performance 



0 0. 

(/)  

250. 

200- 

150. 

I00. 

50, 

S "1 
to z 

_ _ . _  

0 ! �9 I O12 0!3 0~.4 O.5 016 0.7 O.8 0'9 I~0 

Strain ('/.) 

Fig. 4 Stress-strain response in type 304 stainless steel.[231The solid lines represent the test behavior�9 The dashed lines represent Eq 24, 
with x 0 = 55.32 MPa, H = 718.33 MPa, V[kT = 0.43 MPa -1, and Z = 2 x 10-13/~. 

Z = 7  1 , a -  , b -  ~ =  - - Y p =  
~[ I +~t J ~ 2 kT kT 

and 

u = exp - 0  

After a short elastic-plastic transient, (I) reaches a steady value of 

o :  v 
s kT ('~- HTP - Xo) = - l n  

N~-+~ 2 - 1 
[24] 

Equation 24 describes the stress-strain response in the range of 
plastic deformation. By back-extrapolation, the yield stress can 
be obtained at 7p = 0 as: 

kT "~1+ ~2 - 1  
Xy = x 0 - ~ In [25] 

For more complicated yielding behavior, e.g., for yield drop 
phenomena,  a dislocation multiplication model  has to be incor- 
porated into the kinetics description.l lI ,  19,20] In that case, the 
differential equation (Eq 22) has to be solved numerically. 

3.2. Stress  R e l a x a t i o n  

In stress relaxation, the total strain is held at a constant value 
so that: 

= o  
~t 

Equation 21 then reduces to: 

[261 

which can be integrated to the form: 

t anh  �9 = tanh  exp k r  [27] 

From this, the stress variation in stress relaxation can be ex- 
pressed as: 

[ 1 x = x i + tanh - ]  tanh exp kT [28] 

3.3. Constant Stress-Rate Loading and Ratchetting 

Consider  a tr iangular-wave loading profile, as shown in Fig. 
3, where t s represents the starting time of plastic flow and tf the 
final t ime of plastic flow, both satisfying the condit ion �9 = 0. 

In the loading period (t s < t < tR): 

1 O =  ( '~ -HTp)=~-~  t -  ,~ s i n h O  [291 

which can be integrated to 

u - p  1 - p  
k u + q  ~ + q  

where 

2AH 
k =  . , p =  

"t 

V;t ~-I + ~2 (t _ is) ~ 
- -  exp kT J 

~1 +2L2 - 1 ~/i +k2  + 1 

~. ' q =  2 

[30] 
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u = exp - 0  

In the unloading period (t R < t <- tf): 

/ - ~ - ~  1 ~ s inhO [31] 

which can be integrated to 

u + p UR + P I_ V;~ ~ + ~,2 (tR - t) ) 
-- - -  exp [32] 

q--  ~ q -  Lu R kT 

where u R = exp --O (tR) is determined by Eq 30 at t = t R. 
In stress-controlled cycl ing,  materials often exhibit ratchet- 

ting behavior in which  the plastic strain accumulates progres- 
sively. The small  amount o f  plastic strain that is not reversed in 
the cycles  may  lead to unacceptably large accumulated strains. 
For this condition,  Eq 30 and 32 provide a set of  iterative equa- 
tions that express the accumulated plastic strain. Although Eq 
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Fig. 5 Stress-strain curves for 8660 steel. [24]The solid lines 
represent the observed behavior. The dashed lines represent Eq 
23, with X = 66.97 exp (-2589/T), V/k = 6.5. The elastic modulus 
E and work-hardening coefficient H vary with the temperature 
as E : 40000 ( 1 - 0.0008 IT-  300]) and H = 963 ( 1 - 0.00093 
[T - 300]). Temperature is in degrees Kelvin. 

30 and 32 are derived for the zero-to-tension loading case, they 
are also val id  for loading with a posit ive stress ratio (R = Xmi n / 
Xmax), provided the m i n i m u m  stress does not exceed "c 0. 

At low temperatures, X is small  and then Eq 30 and 32 can be 
combined in a differential form (see Appendix  A for details): 
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Fig. 6 Yield stress as a function of strain rate and temperature. 
The symbols represent the behavior of a microalloyed steel [ 16] 
and the curve represents Eq 25: 
t~y = 359.54 - 0.0942T In {[~(1 + X 2) - 1]/)~} 
where Z = (5.4 x 108/e) exp (-5800/T). 
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Fig. 7 Stress relaxation in 1100 aluminum. [15] 
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k T F  . ( 2 A H +  
d N =  ~--~[ o + l n  exp ( - ~ ' / ]  

V 
q) = kT (tmax - HTp - "~0) [331 

3,4. Creep  

In creep, x = 0 and Eq 21 reduce to: 

VH �9 2VHA sinh ,b = - - ~ - ~ , p  = -  k r  [34] 

which can be integrated to: 

._= 
tD 

t~ 

ep 
c.) 

0.14 

~o = 7.4 (a = 22.2 ksi) 

o.12 o r  = 6.3 (a = 21.3 ksi) 
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Fig. 8 Comparison of Eq 35 with the creep behavior of type 
304 stainless steel tested at room temperature.[231 The creep 
strain is given by E = (~0 - t~)/~i3VH, where ~ is obtained from 
Eq 35 with V/kT = 0.52 MPa -1, H = 718.33 MPa, and 2V H A/kT 
= 6.6 x 10 -6. 

t~o 2V H A t )  
t a n h ( 2 ] = t a n h ( ~ - ] e x p  (" ~-~ ) [35] 

4. Comparison and Discussion 

Plastic deformation is alwaysrate and temperature depend- 
e n t - - i t  is thermally activated.[23-25] Analyses of  experimental  
results obtained in tensile tests demonstrate that Eq 23 and 24 
represent the behavior over a wide strain rate and temperature 
range. Figure 4 represents the behavior of type 304 stainless 
steel at three strain rates, [23] and Fig. 5 shows the effect of  tem- 
perature on the stress-strain relation in 860 steel. [26] The vari- 
ation of yield stress with strain rate and temperature is shown in 
Fig. 6. Good agreement  with the constitutive law is noted. 

Table 1 Material constants and activation parameters for 
type 304 stainless steel 

Material constants 

Ix 5766.4 MPa 
H 718.33MPa 
V/N/3 1.213 x 10 -21 cm 3 
A/N~- 5.08 x 10- 9 s -1 

Table 2 Comparison of calculations and measurements 

Mechanical quantities Test Calculation Test Calculation 

tR, s 2 2 210 210 
aA, MPa 217 219 209 219 
~RAT, % 0.561 0.575 1.139 1.286 
eta, % 0.365 0.386 0.018 0.016 
eF,% 1.810 1.834 2.039 2.176 
o6, MPa 257 258.5 256 258 
esc, % 0.702 0.6 0.847 0.733 

Note: c A is the stress at point A; o G is the stress at point G; ERA T is the 
ratchet strain accumulated from point B to C; eCR is the creep strain in DE; 
E F is the plastic strain at point G; and eSC is the plastic strain produced by 
load sequence HI. 
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Fig. 9 Stress-strain curve for type 304 stainless steel. (a) Experimental.[27] (b) Predicted. 
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Fig. 10 Rate dependence of ratchet strain under stress cycling. 
The symbols represent the test results.[271The solid curves are 
descriptions of Eq 33, and the dashed curves are descriptions of 
Chaboche's model.[28] 

The behavior in stress relaxation in expressed by Eq 27. 
Stress relaxation tests provide a method for the determination 
of the internal stress. As shown by Eq 27, I; i is the stress level at 
the end of stress relaxation. The stress relaxation o fa  1100 alu- 
minum alloy was analyzed by Wilson and Garofalo[14,15lusing 
a kinetic equation similar to Eq 28 for a symmetrical barrier. 
Their results are shown in Fig. 7. 

Creep was also analyzed. EqUation 35 shows that the initial 
value of �9 controls the subsequent creep: It depends on the 
stress, temperature, and the initial strain. Figure 8 shows the 
creep behaviors of type 304 stainless steel at three stress levels. 
Very g.ood agreement is found between the theoretical descrip- 
tion (Eq 29) and the observed behavior. 

The validity of the deformation kinetics model can be fur- 
ther verified by a simulated test on type 304 stainless steel in 
comparison with the actual experiments of Ruggles and 
Krempl. [27] The imposed loading sequence (History I) are 
OA--strain-control led loading to e = 1% with strain rate e = 
8.33 • 10 -4 s-l; AD--stress-control led cycling (1000 cycles) 
with a rise time of 2 s; DE----creep for 700 s; FG--s t ra in-  
controlled loading to eF + 1% strain; and HI - -one  cycle of 
stress-controlled cycling (2100 s). These processes are de- 
scribed by Eq 17, 24, 26, 27, and 29, with material constants 
and activation parameters as listed in Table 1. The measured be- 
havior is shown in Fig. 9(a), and the calculated stress-strain re- 
sponse is shown in Fig. 9(b). The measured and calculated 
behavior is also given in Table 2. Excellent agreement was 
found between the theoretical description and the experiment. 

In stress-controlled cycling, materials often exhibit signifi- 
cantly rate-dependent ratchetting behavior. [27] The classical 
treatment applies either time-independent plasticity or plastic- 
ity. [28] Equation 33 provides a theoretical description devel- 
oped from deformation kinetics theory; it expresses the strain 
increment per cycle (dT/dN) explicitly in terms of stress, tem- 
perature, and loading rate. Figure 10 shows the comparisons of 
Eq 33 with the observed behavior and a power-law model.[281 It 
is obvious that deformation kinetics theory provides a good de- 
scription of ratchetting. 

5. Conclusions 

It has been shown that low-temperature plastic deformation 
can be represented by kinetics combination of forward and re- 
verse activations (Eq 5). From Eq 5, the empirical sinh n equa- 
tion (Eq 6) is derived in physically rigorous terms. The 
hyperbolic sine expression (Eq 14) is equivalent to the general 
rate equation (Eq 5) under the condition that the activation 
work is equal in forward and reverse directions. 

An energy function 

~=~(~-Hrp-XO) 

was introduced. Plastic deformation processes are shown to be 
governed by the evolution of this energy expression and the 
strain-rate equation (Eq 20) coupled with the evolutionary 
equation (Eq 21). Because the apparent activation energy 
AG*(W) is related to the function �9 through the relationship 

AG~(W) = AG +~ - Weft= AG $ - kTO 

this energy approach is uniquely defined by the principles of 
statistical thermodynamics. The differential equations (Eq 20 
and 21) represent the plastic flow and the energy condition; the 
operational equations describe the deformation response to the 
imposed loading constraints. 
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